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We study theoretically the slow viscous motion of a long slender drop placed in a 
simple shear flow, the drop having a low viscosity compared with that of the suspend- 
ing fluid. As a simplifying approximation, the cross-section of the drop is taken to 
be circular. An equilibrium shape with the drop nearly aligned with the flow is found 
for all shear rates, although the equilibrium is only stable to small disturbances for 
shear rates below some critical value. The stable equilibria just below the critical 
shear rate are found to be accessible only if the shear rate is increased slowly. 

1. Introduction 
The deformation and break-up of a single drop of viscosity pi freely suspended in 

another fluid of viscosity ,u undergoing shear a t  vanishingly small Reynolds number 
has been the subject of several studies theoretical as well as experimental. These 
studies have established that drops of low viscosity relative to the suspending fluid, 
i.e. pi < p, can deform into long and slender shapes, in contrast to the case pi 2 ,u 
where the drop remains more or less spherical up to the point of break-up. Such slender 
drops require relatively large shear rates before they break, and for this reason have 
attracted the attention of several investigators. 

Two recent theoretical studies (Acrivos & Lo 1978; Hinch & Acrivos 1979) have 
presented solutions for the two undisturbed flows, axisymmetric extensional flow and 
two-dimensional hyperbolic flow respectively, both of which are pure straining motions. 
I n  this paper we extend these analyses to simple shear flow, not only for completeness, 
but also because most experiments have been performed for this flow which is easier 
to set up. At first glance, i t  might appear that the present analysis could follow the 
general lines of the earlier studies and that the results for simple shear would not 
differ much from those for the pure straining flows. We shall see, however, that the 
presence of the vorticity in the undisturbed flow gives rise to some fundamental 
differences. 

We recall that in our analysis of hyperbolic flow (Hinch & Acrivos 1979), we de- 
composed the undisturbed two-dimensional strain into an axisymmetric strain plus a 
remainder which was then treated as a perturbation. The regular perturbation expsn- 
sion appeared to converge rapidly, and, although the cross-section of the drop was 
found to be approximately an ellipse with an axis ratio of 1.5, the deformation curve 
of the drop length versus shear rate, as well as the critical strain rate required for the 
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break-up, were essentially identical to those obtained by Acrivos & LO (1978) for the 
axisymmetric flow with a drop of circular cross-section. I n  retrospect, the result is 
hardly surprising. The length of the drop is determined in the two flows by the same 
dynamical balance between surface tension and the stretching due to the component 
of the strain rate along the slender drop. The difference between the axisymmetric 
convergence of the undisturbed flow in the cross-section and the non-axisymmetric 
convergence in the hyperbolic flow is easily accommodated by a small change in the 
cross-sectional shape which has an indirect effect on the dynamics that determine the 
length only through the resulting very small change in the cross-sectional area. 

I n  view of the above, one might be tempted to develop a solution to the present 
problem by first decomposing the undisturbed simple shear into a two-dimensional 
straining motion, with its principal axes of strain at 45' to the direction of the flow, 
plus a solid-body rotation, and then treat the latter as a perturbation. Experiments 
have shown, however (see e.g. Torza, Cox & Mason 1972), that  the long axis of slender 
drops is almost aligned with the flow rather than being slightly perturbed from the 
principal axis of strain. Thus the vorticity plays a role more significant than that of a 
perturbation, and so the scheme suggested above is bound to  fail, unless perhaps a 
large number of terms in the expansion could be obtained. 

We have chosen, therefore, an alternative approach in which we do not alter the 
form of the shear flow, but make the approximation that the drop has a circular local 
cross-section. I n  § 2 ,  we shall derive equations governing the location of the curved 
centre-line of the drop as well as the variation of the local radius, but shall ignore all 
the velocity and stress fields which would deform the cross-section from its assumed 
circular form. Unfortunately, the present analysis for simple shear flow, in contrast 
to the hyperbolic flow we studied earlier, cannot be incorporated into a rational 
perturbatmion scheme, and thus we are unable to  estimate by how much the local 
cross-section departs from being circular. But, based on our earlier results in hyper- 
bolic flow that the cross-section does not change greatly from being circular, and that 
the deformatmion curve and critical shear rate differ very little from those calculated 
with a circular cross-section for axisymmetric flow, we have some confidence that our 
assumption of a circular cross-section in simple shear will not lead to  any significant 
errors. Besides, our ad hoc assumption that the cross-section is circular greatly sim- 
plifies the problem in that it enables us to analyse easily several aspects of the dynamics 
of the drop and to make predictions which are in reasonable agreement with experi- 
ments. On the other hand, any theory which did not assume that the cross-section is 
circular would be considerably more difficult to develop and would inevitably require 
a large computation effort probably beyond the capabilities of present-day computers. 

I n  this paper we shall show that the behaviour of a low-viscosity drop in simple 
shear differs substantially from that found earlier in pure straining flows. First the 
inclination of the axis of the drop to  the direction of flow, which has been observed 
in experiments to decrease as the drop lengthens in stronger flows, will be shown to be 
of the same order of magnitude as the slenderness of the drop. This small inclination 
greatly reduces the effective strength of the straining motion stretching the drop and 
results in the non-dimensional length taking a form l(,ui/,u)~/a and being a function 
of a non-dimensional shear rate G = E,ua(pi/,u)%/y, in which E is the shear rate, 1 the 
half-length of the drop, a the radius of a spherical drop with the same volume, and 
y the interfacial tension. These non-dimensional forms which are derived in § 2 were 
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given earlier by Acrivos & Lo (1  978) .  In  contrast to the results for the pure straining 
flows, we shall find in 3 3 that a steady shape drop exists for all shear rates. We shall 
then find in 3 4.4 that the equilibrium is unstable to small disturbances if G > 0.0541. 
Thus, in shear flow, the critical flow strength is due to an instability to small disturb- 
ances, rather than a non-existence of steady drop shapes as in the pure straining flows. 
We will further find in 3 4.5 that if the shear rate is suddenly increased beyond a 
certain value, then the drop will not reach the equilibrium shape corresponding to the 
new shear rate, even if this shape is stable to small disturbances. This instability to 
large disturbances may help to explain the large scatter in the experimentally 
measured values of critical shear rates, and the difficulty that has been experienced in 
obtaining reproducible data in simple shear when the drops are long and slender 
(Grace 1971) .  The different behaviour of a drop in simple shear and in pure straining 
Aows will be seen to be due to the presence of vorticity which causes the slender drop 
to align itself in a direction of no straining and which leads to oscillations around an 
equilibrium. These differences in behaviour do not depend on how the flow converges 
in the cross-sectional plane, which in turn determines the cross-sectional shape. We 
therefore believe that the assumption of a circular cross-section can affect the 
theoretical predictions only in a minor way. 

2. Governing equations 
2.1. The co-ordinate system 

We study the slow viscous motion of a drop with the undisturbed flow far from the 
drop taking the form of a simple shearing motion, 

u = (Ey, O , O ) ,  

with respect to the fixed Cartesian system (x, y ,  2). We adopt the ad hoc approximation 
discussed in the introduction that the drop has a circular cross-section of radius R(x, t )  
and denote the displacement of its centre-line above the direction of the flow by 
~ ( x ,  t ) ,  see figure 1. Because of symmetry about the origin, R( - x, t )  = R(x, t )  and 
q( -x, t )  = - ~ ( x ,  t ) .  Also Z(t), which is the first positive root of R(1, t )  = 0, is the half- 
length of the drop. The equation for the surface of the drop is thus 

z2+  ( y - ~ ) ~  = R2 for 1x1 < l ( t ) .  

We assume that the drop is slender and nearly aligned with the flow, so that 

R, 7 < 1 and aRlax, aV/ax < 1. 

It is convenient to introduce local polar co-ordinates r ,  8 with respect to the centre- 
line of the drop, so that 

y = q+rsin8,  z = rcos8. 

The co-ordinate system (x, r ,  8) is not orthogonal, however, because the unit vector 
for x increasing a t  fixed r and 8 has a small component in the yz plane. This slight 
skewness cannot be neglected, because it produces the vital stretching which keeps 
the drop long and slender. To a large extent we shall avoid the difficulties of working 
in a skew co-ordinate system, and only employ the skew co-ordinates to express 
concisely the results of our calculations in the original Cartesian system. Similarly, we 
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FIGURE 1 .  The co-ordinate system. 

shall take components of vectors and tensors on the three unit vectors, expressed 
in terms of the Cartesian co-ordinate system 

$ = (1 ,  o ,o ) ,  f = (o,sine,cose), 6 = ( O , C O S ~ ,  -sine), 

where it should be noted that 9 is not the unit vector for the skew co-ordinate system. 

r = R(x,t) in 1x1 < Z(t), 

In  our polar co-ordinates the surface of the drop is 

with a normal nz = -R'-$sin6, n,. = I, ne = 0,  

where primes will be used to denote derivatives with respect to x and dots derivatives 
with respect to time. Although the normal shown above is not quite of unit length, 
this fact will cause no difficulties since n will only be used in expressions which are 
homogeneous in it. 

The undisturbed flow in our polar co-ordinates is then 

u, = E(r+rsin6),  u,. = ue = 0, 

g x e  = g o z  = ,uE cos 6, 

and its associated stress field is 

crm = a;, = ,uE sin 8, 

all other components being zero. 

2.2. The externaZJlow 

Since our analysis will be restricted to inertialess motions, the instantaneous shape of the 
drop determines the disturbance flow through the boundary condition on the stress, 
and the disturbance flow thus determined can then be used to find the evolution of 
the shape. To avoid the complications of the skew co-ordinates, we solve the Stokes 
equations of motion in the Cartesian system by expressing the disturbance flow 
outside the droplet in terms of singularities distributed along the centre-line of the 
drop. 

As the fluid inside the drop has a low viscosity, it cannot exert any significant 
shear stress on the external fluid, and the disturbance flow must therefore cancel the 
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shear stress of the undisturbed flow on the surface of the drop. A suitable flow is 
generated by a line distribution of stresslets. Hence we consider distributed along the 
centre-line of the drop stresslets of strength 47~pf (x), which induce a flow 

and a pressure 

where the time dependence of r has been suppressed. Evaluating the integrals 
asymptotically for the slender drop, we find that the flow near the drop, r = O(R), 
is to leading order parallel to the undisturbed flow, 

which can be expressed more simply in terms of our polar co-ordinates as 

u, N f (x) sin 8/r .  

At the next order we find a correction flow which near the drop is entirely in the 
yz plane with 

U, - - f' sin 8 + ff( 1 + cos 28)/2r, 

U ,  - - fq' sin W / r .  

A pressure disturbance is also generated near the drop to this order 

p - - Zpf' sin 81' + 2pf$ cos 2Blr2. 

The associated stress fields can now be calculated. At leading order we find 

a,, = a;, - - pf sin 8/r2, a,, = goz - pf cos B/r2. 

Of the correction terms which occur at  the next order, we shall only require 

grr N 2,uf sin 8/r -,ufy'( 1 + 3 cos 28)/r2, 

and 

At this same order care would be needed in calculating axz, but the complications of 
the skewness of the co-ordinates can be avoided simply by differentiating the first 
expression for u, which contains only Cartesian co-ordinates. 

Examining the above expressions for the corrections to the velocity and stress, we 
see the need for an additional small disturbance flow O( f ', f q ' )  in the yz plane with a 
zero and a first harmonic variation in 8. The components with the second harmonic 
variations will now be dropped because they would deform the cross-sectional shape 
of the drop which, as discussed in the introduction, we have assumed ad hoc to be 
circular. The required additional disturbance flow can then be generated by sources 
of strength Zi.rg(s) and source-dipoles of strength 2nh(s) distributed along the centre- 
line of the drop, 

- - pf' cos/r + pff sin 28/r2. 
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in which [ . 3 = (x - s ) ~  + (y - ~ ( s ) ) ~  + z2.  This disturbance flow generates no pressure 
disturbance. Evaluting the integral asymptotically for the slender drop, we find that 
near the drop the flow is again entirely in the yz plane with 

u, - g(x)/r + h(x) sin 8/r2 ,  

u g  - - h(x) COS o/r2 .  

There is no need to proceed beyond this leading order because g and h are small 
compared with f. The associated stress fields which we shall require are 

urn - - 2pg/r2 - 4ph sin 8/r3,  

urg - 4ph COS 8/r3.  

We now gather together the stress fields from the undisturbed flow and the dis- 
tribution of stressets, sources and dipoles to evaluate the boundary condition of 
continuity of surface stress. As in the previously studied cases of slender drop of low 
viscosity fluids (see, for example, Acrivos & Lo 1978), the stress inside the drop is 
dominated by a pressurep(x, t )  which does not vary over the cross-section of the drop. 
Furthermore for a slender drop the curvature of the surface is asymptotically 1/R, 
so with y denoting the surface tension, the boundary condition on the stress is 

( 5 - p ) n  = o.n ,  

i.e. 

F - - p  = Bp(E - f / R 2 )  sin 0 G 1 
+ ?p{&r' ( f /R2-  E )  - f r ' /R2- -  2g/R2+ [R'( f /R2-  E )  + 2f ' /R - 4h/R3] sinI9) 

+ 6p[ - R'( f /R2+ E )  - f ' / R  + 4h/R3] cos 8. 

I n  the above, second harmonic terms have been left out for the reasons stated earlier, 
and correction terms o(,uf/R2) in the % direction and o(,uf'/R2, pfq'/R2) in the F and 6 
directions have been ignored as being small. The boundary condition is satisfied by 
choosing 

f = ER2, h = ER3R', 

and g = - ( y / R  - P I  R2/2/~ - &ER2r'. 

With the flow outside the drop now known in terms of the shape and the internal 
pressure, we can obtain an equation for the evolution of the shape by applying the 
kinematic condition at the surface, 

R+qsinO = u . n  
= - E(R'q + 4Rr') +g/R+sin I 9 [  - E(rr'+ RR') - f ' -  f R ' / R  + h/R2].  

Substituting in the expressions for f, g and h, we then arrive at  

Y P  A = -ErR'-Er'R--+-R, 
2P 2P 

= -Err'-  3ERR'. 
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It is worth remarking a t  this point that the same results can also be derived using 
the method of inner and outer expansions employed previously for the case of pure 
straining motion (Acrivos & Lo 1978; Hinch & Acrivos 1979). In  contrast to those 
earlier studies, however, where the inner solution and the drop shape could be found to 
leading order without investigating the outer region, the inner solution to the present 
problem contains a function of x which can only be determined uniquely by matching 
with the outer solution. The method described above was therefore chosen for presenta- 
tion since i t  requires only a single expansion for the solution which applies everywhere. 

2.3 .  The internalflow 

We complete the derivation of the governing equations by calculating the internal 
pressure distribution p(x ,  t ) .  The flow inside the slender drop is essentially that in a 
cylinder of radius R driven by a pressure gradient p' and an external velocity on the 
boundary u, = E(7 + R sin 6 )  + f sin 0 / R .  With pi the internal viscosity, the flow 
inside the drop is thus 

R2 - r2 
u, = -- p' + E(7 + 2r sin 6) .  

*pi 
This flow produces a volume flux along the drop 

and a divergence in the volume flux changes the radius in time according to 

2nRfZ+q'  = 0. 

Now on account of symmetry, there is no volume flux a t  the centre of the drop x = 0, 
so that integrating twice we find that 

where the pressure a t  the centre of the drop p,(t) has to be chosen so that the volume 
of the drop remains constant, i.e. 

J-lnRZdx = $na3, 
1 

with a being the radius of a spherical drop having the same volume. 

2 . 4 .  Non-dimensionalization 

By combining the interior and exterior solutions, we obtain our equations of motion 
for the deformation of the drop. Letting h = pi/p < 1,  we non-dimensionalize these 
equations by scaling R and 7 with ah&, x and 1 with ah-*, t with E-lh-4 and p ,  with 
PEA*. The non-dimensional equations are then 

together with the volume constraint 
fl 
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These are the governing equations which we shall use henceforth throughout the 
paper. We see that these equations contain just one non-dimensional parameter 
G = hjpEa/y,  the effective strength of the shear flow. The drop is slender as long as 
R/ l  -g A-4. 

Our governing equations were derived under the ad hoc approximation that the 
cross-section was circular. It is, therefore, important to examine the equations to see 
that each of the terms is physically reasonable and not just an undesirable artifact of 
our modelling. To begin with, we note that the first terms on the right-hand side of 
the & and r j  equations represent advection with the shear flow. Thus where the drop 
is above the plane of no flow, 7 > 0, the drop would expand, & > 0, if it is fatter 
upstream, R' < 0, and fall, r j  < 0, if it  is lower upstream, 7' > 0. The second term in 
the q equation represents the need of a tapering drop, R' < 0, to rise, r j  > 0, when the 
shear produces a velocity difference proportional to R across the drop; the drop must 
rise to ensure continuity of the normal velocity. The second term in the & equation 
comes from the stretching, 2 < 0, by the component of the strain-rate tensor along 
the centre-line of the drop when 7' > 0. The third and the two final terms represent 
respectively the contraction of the drop, & < 0, by the surface tension forces and its 
expansion, & > 0, by pressure forces. We note that the pressure increases along the 
drop, p' > 0, when some return flow is required along its centre-line to cancel the flow 
along its surface, or to shorten its length ( A  > 0 for x small, < 0 for x near I ) .  Thus 
the role of each of the terms in our governing equations can be accounted for in 
physical terms. 

3. Equilibrium shapes 
3.1.  The problem 

The steady drop shapes can be determined by solving our governing equations with 
& and 4 set equal to zero. The q equation can be integrated to give 

7 ( 4  = f [3(R2(0) - R 2 ( X ) ) 1 4  

where we take the positive root in x > 0 and, on account of symmetry, the negative 
root in x < 0; the other choice is unphysical and does not lead to a solution. Two 
immediate consequences of the above result are that the end of the drop a t  x = 1 is 
further up in the flow than the surface of the drop a t  the centre by a factor 34, i.e. 
~ ( l )  = 34R(O), and that the upper surface of the drop has a displacement 7 + R with 
a maximum 2R(O) which occurs when R = +R(O). 

When the above steady solution for 7 is substituted into the & equation, we obtain 
the integro-differential equation for R 

- 31(R2(0) - 2R2) R ' - - + ~ p , R + 3 4 4 R ~ o x ( R  1 ( 0 a2 - R2)* dx = 0. 
2G ( R2( 0) - R2)* 

This equation is mildly singular a t  R = 0 and R(O), and strongly singular a t  R = 

R(0)/24. The latter singularity can and must be avoided bychoosingp,, the pressure a t  
the centre, so that a t  the singularity the pressure is 2t/GR(O). It is interesting to 
contrast this requirement in simple shear flow that p, must be uniquely chosen with 
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the corresponding non-uniqueness found in pure straining flows. Specifically, for the 
case of an axisymmetric straining motion, Buckmaster (1972, 1973)) was the first to 
observe that any pressure at  the centre gave an equilibrium shape, although only a 
countably infinite set gave shapes which were smooth analytic functions at  the origin. 
The selection of a unique realizable equilibrium shape from this discrete set was finally 
made by Acrivos & Lo (1978) from a stability analysis. The key difference between 
the extensional and shear flows is that the component of the strain-rate tensor along 
the centre-line of the drop, f ,  (in the -7'R term of the & equation) varies in our 
shear flow, decreasing to zero at  the end, whereas the corresponding term in the 
extensional flow is constant. Of even more importance though is the fact that this 
component of the strain rate, f ,  as well as depending on R, is directly proportional 
to the tapering of the drop, R', so that the combined effect of the advection and 
stretching terms - yR' - q ' R  in the R equation is proportional to R'. Thus, near the 
middle, the drop has a tendency proportional to  R' to contract through stretching; 
and at  the ends it has a tendency proportional to R' to expand through advection. 
Thus unless the pressure and surface tension terms cancel each other at  the point 
where these tendencies become equal (with the expanding pressure dominating into 
the middle and the contracting surface tension dominating a t  the ends), the tapering 
R' has to become infinite to achieve a balance. 

To solve the above equation for the equilibrium shape of the drop, a rescaling of 
the radius and length proves convenient. To this end we set x = 3h2GR2(0) z ,  R(x)  = 
R(0) F(z)  and p = Po/GR(0). The equation then becomes 

1-2F2 dF F(l-F2)* dz  
-dF = 0, 

F2 dF 
- + 1 -Po F -aF 

(1  - F2)4 dz 

in which the parameter a = 48G2R2(0). The problem has now been reduced to the 
following. A value of a is selected and the integro-differential equation is solved with 
the constant Po chosen to avoid the singularity a t  F = 2-4. Then R(0) and G are 
calculated from the value of a and the volume normalization 

Finally the dimensionless half-length of the drop is found as I = 342GR2(0) zl, where 
zI is the first root of F(z)  = 0. 

3.2. Gsmall 

The limit of small a can be solved analytically. This limit which ignores the variation 
of the pressure inside the drop corresponds to an inviscid drop or equivalently low 
shear rates because making h small also reduces G. The differential equation can be 
integrated directly taking Po = 24 to produce an implicit expression for the shape 

z = ~0s-1 F + 24( 1 - F2)*. 

which when substituted in the volume constraint yields 

R 4 ( 0 )  = (24)-* ( 1  + 3n/298)-lG-l. 
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Finally the relation between the dimensionless half-length of the drop and the shear 
rate is found to be 
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1 = 3*45G#, 

from which it is apparent that the dimensional length does not depend on the value 
of pi, clearly an appropriate result for an inviscid drop pi = 0. The G dependence of 
the length at low shear rates should be contrasted with the ( , ~ a E / y ) ~  dependence of 
low strain rates in pure straining motions. The drop in simple shear is longer because 
the component of the strain rate along the centre-line of the droplet is not O( 1 )  as in 
extensional flows but, as already mentioned in the introduction, is O(R/l)  which also 
equals O(Z-8) from the volume normalization condition. Balancing the strain rate 
with the surface tension term O(G-lR-l) = O(G-I Z#), yields then 1 = O(G4) in simple 
shear and 1 = O(G2) in pure extension. To keep the drop slender when G is small we 
need the dimensional aspect ratio hgR(O)/Z = 0-227htG-3 small. 

3.3. An approximate solution 

An approximate way of solving the integro-differential equation for F when a is not 
small is to replace the integral by its form in the middle of the drop, i.e. by (1  - F ) /  
(Po- 1 ) .  This approximation, which relies on the central part of the drop dominating 
the dynamics, was successfully used in the corresponding problem in axisymmetric 
extensional flow by Acrivos & Lo (1978) who computed a critical shear rate within 
2 yo of the exact value. When the same approximation is made here and the pressure 
Po is chosen so as to remove the singularity a t  F = 2-4, we find that 

Po = *{24 + 1 f ( 2 t  - 1) [l - 24a/(24 - l)]*}, 

and that the integro-differential equation reduces to 

1 + 2*F dF 
- + 1 - AF = 0, 

(1 dz 

where A = (24 - P0)/(24 - 1). This can be integrated to give for the volume normaliza- 
tion 

and for the scaled length 

in which B = [2/( 1 - A2)t] tan-l[( 1 + A ) / (  1 - A ) ] & .  The results from this approximate 
solution are plotted in figure 2 .  It is seen that the shape of this approximate deforma- 
tion curve is qualitatively similar to that found by Acrivos & Lo (1978) in extensional 
flow and this suggests that the internal pressure gradient has a similar effect in both 
cases. Specifically, the lower internal pressure at  the middle compared with that a t  
the ends (required to drive a return flow along the centre portion of the drop) reduces 
the tapering at the middle and so leads to a longer drop than one with a constant 
internal pressure. The effect increases with G, because the pressure difference between 
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FIGURE 2. The dimensionless half-length of the equilibrium drop as a function of the shear rate. 
The solid curve is the numerical result from $ 3  3.4 and 3.5, with the point A corresponding to 
a = 0.125. The dashed curves are the asymptotes for G + 0 from 0 3.2 and for G --f co from $3.6,  
while the dotted curve is the prediction of the approximate solution of 3 3.3. 

the middle and the ends increases as the length increases. At a shear rate of G = 0.0549, 
the approximate solution suggests that a critical state is reached from which further 
increases in length reduce the pressure at the centre more than they reduce the 
tapering, and so no equilibrium shape can exist beyond this shear rate. By the same 
argument the upper branch of the solutions produced by the approximate solution 
would be unstable. 

3.4. A n  iterative numerical method 

The small a solution and the approximate solution suggest a numerical scheme for 
solving the integro-differential equation for F(z ) .  We take F to be the dependent and 
z the independent variables. Then the equationisusediteratively to find (1 - F2)ldz/dF, 
substituting the current form into the integral to find the next iterate. The integral 
was computed by the trapezoidal rule after the singular terms in the integrand 
proportional to F-2 and F-1 as F + 0 had been subtracted and evaluated analytically. 
Better than 4 figure accuracy was achieved with 10 equally spaced points in the range 
of integration. At each stage of the iteration the pressure Po was determined by 
requiring that no singularity should exist at F = 2-4 in the next iterate. A suitable 
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test for the convergence of the iteration was found to  be that (1 - F2)4dz/dF a t  
F = 1 changed by less than For a < 0-1 the iteration converged within 10 steps 
starting from the null function, but a t  larger a it proved much faster to  start the 
iteration from the converged result for a nearby a. No convergence could be achieved 
for a > 0.125. From the converged results for (1 - F2)3dz/dF, the volume normaliza- 

tion integral and the integral for the scaled length z1 = ( d z / d F )  dF were evaluated 

after subtracting off the (1 - F2)-4 behaviour a t  F+ 1 and integrating that part 
analytically. 

The results from the iterative numerical scheme are plotted in figure 2 as the solid 
curve from the origin to the point A where a = 0.125. Also shown are the deformation 
curve from the approximate solution of $3 .3  and the asymptote for small G from 
$ 3.2. Clearly the numerical results do not exhibit the doubling back of the approximate 
solution at  G = 0.0549, although up to G = 0-05 the two solutions are within 10 yo. 
of each other. On the other hand the asymptotic expression for small G deviates from 
the exact solution by more than 10 yo when G > 0-03 and is in error by more than 25 yo 
when G = 0.05. Therefore from a practical point of view the approximate solution 
has some merit. 

3.5. A second nuwierical scheme 

The fact that  the results from the iterative numerical scheme end abruptly at the 
point A in figure 2 (a = 0.125) hints a t  a numerical failure and not a physical one. 
An alternative numerical scheme was therefore devised which did indeed yield 
solutions for higher shear rates and these are plotted in figure 2 beyond the point A .  
This scheme replaced the integro-differential equation for F by two coupled differential 
equations 

dF ( l - F 2 ) 4 ( P F - l )  

dP (1-F2)* 
F2 ’ dz 

l o 1  

_ -  - 
dz 1 - 2F2 ’ 

- -  - a  

which were solved by a fourth-order Runge-Kutta procedure. The singularity a t  
F = 2-4 was removed by starting the integrations at F = 2-4 with P = 24. Because 
the expression for dF/dz is indeterminate a t  this point, a local analysis is necessary 
which yields dF/dz = - 4[2-3 & (+ -a):] at F = 2-*. This result shows why the 
iterative scheme failed when a > 0.125. Starting with one of the two choices for 
dF1d.z a t  F = 2-4, the differential equations were integrated first forwards to F = 0 
and then backwards to F = 1.  The singular points a t  F = 0 and F = 1 where avoided 
by extrapolating from F and d F / d z  to anticipate the position of the end and of the 
centre and then stopping the integration three steps ahead of the singularity. The 
extrapolations F N 1 - kz2 as z-f 0 and F - [$ + (t - a)&] (zl - z )  x (1 - k(z - z ~ ) ~ ’ ~ ~ )  as 
z --f z1 were employed, in which k is unknown and the exponent 0.75 is arbitrary but 
successful. Simultaneously with the evaluation of F from the differential equations, 
F2 was integrated for use in the volume normalization condition and extrapolations 
similar to  the above were made to F = 0 and 1. A step size of 0.05 was found necessary 

to give 4 figure accuracy in z1 and F2dz, the error mainly coming from poor extra- 

polations. 
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The results of this second numerical scheme are plotted in figure 2 in the solid curve. 
Of the two choices for dF1d.z a t  F = 2-$, the positive root yields the curve from the 
origin to the point A as a increases from 0 to 0-125 and the negative root the curve 
from the point A onwards as a decreases from 0.125 to 0.12263 where G becomes infinite. 
The duplication of the numerical results up to  the point A by a totally different method 
serves as a useful check. The additional results beyond the point A show that an 
equilibrium shape for the drop exists for all shear rates. This behaviour should be 
contrasted with the corresponding solution of the extensional flow problem as well as 
the prediction of our approximate solution in 4 3.3, according to which equilibrium 
shapes can exist only up to  some critical shear rate. 

3.6. Glarge 

The numerical results show that as G -+ co the drop takes a special form. A long central 
part of length 261G2 has a constant radius R = 0.0505/G and is fully aligned with the 
flow. I n  this central part the pressure and surface tension forces are in exact balance, 
an equilibrium which looks suspiciously unstable. At the ends of the drop there are 
small regions of length O(G-l) in which the drop tapers and the centre-line rises. As 
G - t  co the end regions tend to a constant shape with a size proportional to G-I. Also 
all the dynamical effects in the R equation play a role only in the end regions. Our 
earlier approximation clearly fails therefore because it was designed to model the 
central part of the drop and represents the important end regions rather poorly. As a 
consequence of the fact that  the radius remains constant in the long central part 
( F  = l ) ,  we can evaluate asymptotically the integral in the volume normalization 
condition 

in which the correction 2.61 for the ends has been extracted from the numerical 
solutions. This result together with a+ 0.12262 yield the asymptotic estimate for the 
length of the drop a t  high shear rates 

1 N 261G2+0.0231/G as G-tco,  

which lies within 10 yo of the numerical solution for G > 0.05. 
The asymptotic form of the equilibrium shape as (7 -+ co explains why equilibria 

exist a t  high flow rates in shear flow but not in extensional flows. As we have explained 
earlier, very long drops cannot exist in extensional flows because it proves impossible 
to support the pressure difference within the drop between its ends and its middle 
which is required in order that the fluid dragged along by the external flow be returned 
along the axis of the drop. But in shear flow the long drops avoid the need for a large 
internal pressure difference by aligning themselves very closely with the flow. In  such 
an orientation, a pressure induced return flow is not required because the flux of fluid 
dragged along by the top surface is cancelled by an opposite flux from the bottom 
surface. 
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4. Time dependent motions 
4.1. The numerical method 

Our prediction of equilibria a t  all shear rates conflicts with the experimental observa- 
tion of drops breaking up when the shear rate is too high. This conflict and the cylin- 
drical form of the computed steady shapes a t  high shear rates lead us to study the 
stability of our equilibria. As a linear stability analysis generates a difficult numerical 
problem, we chose to solve numerically the full governing equations of 3 2.4 as an 
initial value problem. Moreover this numerical approach allowed us to investigate 
some interesting nonlinear motions which will be discussed in 3 4.5. 

Our attempts to set up a finite difference scheme for the problem proved un- 
successful. The changing length of the drop in time can be handled with no difficulty 
by adding and subtracting extra points as required, or by recasting the equations 
in terms of x/Z(t). The trouble with the problem is that the governing equations are 
hyperbolic and the advection plays an important role. Several explicit schemes were 
tried but all were unstable being unable to handle the varying advection velocity. 
Application of the method of characteristics was considered, but this proved un- 
attractive owing to a continuous loss of characteristics through the ends which require 
new ones to be added in a long time run, and the fact that the ends were located at  the 
difficult points where the characteristics become parallel. 

An alternative numerical approach is to represent the shape by a linear combination 
of modal functions with the combination able to change in time. We chose to represent 
the shape as a simple polynomial of x with time dependent coefficients. The powers of 
2 have the advantage that they can be manipulated more simply in this nonlinear 
problem than other modal functions, and they are well suited to represent the mono- 
tonic functions R and 7 which if anything require slightly more flexibility at  the ends. 
We call the representation 

R(x, t )  x R,(t) + R,(t) x2 + . .. + RN(t )  x 2 N ,  

q(x, t )  " y,(t)x+ ... + r N - l ( t )  x2-, 

an N-term representation. It was found convenient to use a polynomial for 7 of one 
degree lower than that for R, although the extra qN(t)x2N+1 term in 7 was added 
occasionally and sometimes it gave more accurate results. 

Our numerical scheme was to substitute an N-term representation into the right 
hand side of the governing equations of 3 2.4 expand in powers of x, and then read off 
the coefficient of x on the right hand side as R, or i,. The program had to be able 
to multiply and divide two polynomials, retaining terms up to x ~ ~ .  Two key steps are 
the treatment of the pressure and the handling of the integral involving the unknown 
fi. The latter problem was solved by our particular representation of R(x ,  t ) ,  because 
in calculating the coefficient of x~~ from the integral, one only needs to know A,, 
m < n, and hence fi can be generated inductively starting from fi, and ending at AN. 
The pressure p ,  has to be chosen to preserve the volume, i.e. so that 

To choose the correct value we exploit the linearity of A in p,. Thus, we evaluate 
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first for p ,  = 0 and then for p ,  = 1 and find which linear combination of the two 
makes the integral vanish. When evaluating the integral it is important to multiply the 
polynomials for R and R exactly, and not to truncate the product after x2N.  The 
length 1, which is needed in the integration, is found from the value a t  a previous time 
step by a Newton-Raphson method, with R’fl) readily evaluated from the polynomial 
representation. A single iteration on the length was always found to  be sufficient. 

The values for the time derivatives R, and i, were used to step the shape of the 
drop forward in time with a fourth order Runge-Kutta method. Four figure accuracy 
could generally be obtained with a time step of 0.05 for N = 4, 0-025 for AT = 7 and 
0.01 for N = 10. At very low values of G and whenever certain rapid motions occurred, 
smaller time steps were necessary. Although the numerical scheme is designed to 
preserve the polynomial representation of the volume, there was some small drift 
over a long time. This drift is equivalent to changing G slightly, which we shall see is 
significant in some circumstances. We therefore renormalized the volume a t  regular 
intervals by multiplying both the R, and 7, terms by the factor necessary to restore 
the volume. 

Some checks on the complicated program are essential. There are the internal checks 
that the volume is almost preserved without the renormalizations and that the 
accuracy improves in a certain way with smaIler time steps. I n  the special cases 
N = 1 and 2 the values of R, and q, were compared with those obtained from separ- 
ately derived expressions. Finally, predictions of the equilibrium shape of the drop 
were compared with those obtained in § 3, as we shall report in 9 4.3. 

4.2. A simple model 

The special case N = I provides a simple model of the motions of the drop and we 
shall turn to it a t  several points in this section. I n  this model, the radius of the drop 
has a quadratic variation while the centre-line is straight with a time-dependent slope. 
Clearly the model cannot be expected to represent accurately the high G equilibria. 

Now owing to the volume constraint, one of the two variables R, and R, can be 
eliminated, so that the model is governed by a second-order system of ordinary 
differential equations. Actually, instead of the original variables yo plus either R, or 
R,, it is more convenient to use two related variables, the length 1 and the height of 
the end h = y(1) = yo 1, in terms of which the governing equations for our N = 1 model 
become 

1 13 1 = h--- 
5f2G 1 + 0.813’ 

The first term in the i equation represents the lengthening of the drop through ad- 
vection, while the second represents contraction due to surface tension. The growing 
differences in internal pressure between the ends and the middle reduce the efficiency 
of the surface tension as the length becomes large. Moreover, the height of the end of 
the drop rises according to the first term in the h equation owing to the velocity 
difference over the cross section of a tapering drop, and sinks according to the second 
term as surface tension reduces the length. The effect on h of the advection increasing 
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FIGURE 3. The dimensionless half-length of the equilibrium drop as a function of the shear rate. 
The solid curve is the numerical result of 3 3, and the dashed curves are the predictions of the 
1-term, 2-term and 4-term polynomial representations. 

the length precisely cancels the effect of the advection on decreasing the height of the 
end on an upward sloping centre-line (as with the - 77’ term in the original 4 equation 
in $2.4). 

4.3. The equilibrium shapes 

As a check on the suitability of the polynomial representation and to guard against 
errors in programming, the governing equations were integrated until an equilibrium 
shape was attained which could then be compared with the results of 3 3. At low rates 
of shear, G < 0.04, an initial shape R = (5/41)6 (1 -x2/Z2) ,  7 = (15/413)) x was used 
with a reasonable guess for the length 1. At higher shear rates it proved necessary to 
start from the equilibrium corresponding to a nearby shear rate. The equilibrium was 
found to be unstable for G = 0-054, see 9 4.4, and so could not be reached by solving 
the initial value problem. We found that the instability could be deferred up to shear 
rates beyond those of interest by the artificial device of replacing the 4, equations 
by the expressions for 7, in terms of R,,, 0 < m < n + 1,  which give qn = 0, and then 
finding the equilibrium by solving the initial value problem for the restricted problem 
in which only the R, vary freely. 
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Figure 3 depicts the dimensionless half-length of the steady-state drop as a function 
of shear rate, the solid curve being the results of $ 3 already presented, while the 
dashed curves are for the N-term representations. Our simple model of $4.2, the 
1 -term representation, has an equilibrium dimensionless half-length given implicitly by 

At low shear rates 1 N 3.5OGa for the 1-term representation instead of 3.45G3 found 
in $3.2. As seen in figure 3, below the critical shear rate G = 0.0501 the 1-term rep- 
resentation has two equilibria, one with a length greater and one with a length less 
than 1-357, while above the critical shear rate there are no equilibria. The 1-term 
representation predicts the length to  within 10 % up to G = 0-045. The 2-term 
representation, which does not show the doubling back of the 1-term representation, 
predicts the length more accurately, keeping within 3 yo up to G = 0.062 and becoming 
10% off by G = 0.07. The addition of further terms slowly improves the accuracy 
particularly below G = 0-06. 

A more critical test for the polynomial representation is the height of the end of 
the equilibrium drop ~ ( 1 ) .  The results for the reciprocal of this quantity are shown in 
figure 4. Our simple model, the 1-term representation, is 45 yo off in its prediction of 
the height of the end by G = 0.045, while the 2-term representation is 23% off. To 
achieve a 5 %  accuracy a t  G = 0.045 5 terms are necessary, while to maintain this 
accuracy to  G = 0.06 10 terms are required. 

The height of the end of the steady-state drop is predicted more accurately if the 
extra qNxZN+' term is added to  the N-term representation of q, although these aug- 
mentedrepresentations predict the length of the drop less accurately. Thus a t  G = 0.045 
the augmented 2-term representation predicts the length with a 5 %  error and the 
height of the end with a 0.3 yo error, while a t  G = 0.06 the augmented 10-term rep- 
resentation predicts the length with a 3 %  error and the height of the end with a 
0.7 % error. 

The shape of the equilibrium drop a t  G = 0.055 is given in figure 5 where we have 
plotted the height of the upper and lower surfaces, y = 7 f 8, as a function of x. Again 
the solid curve was obtained by the numerical method of $ 3.5 with a = 0.1243. The 
polynomial representations are poorest a t  the tip, 7 terms being needed for 6 %  
accuracy and I 0  terms for a 3 yo accuracy. 

We conclude therefore from this study of equilibrium drops that the polynomial 
representation works well for G < 0.06 with about 10 terms. 

4.4. The linear stability of the equilibrium 

As just noted, the equilibrium cannot be found by solving the initial value problem 
for G > 0.054 because the equilibrium is unstable. The stability was further investi- 
gated by solving the initial value problem starting very near to the equilibrium. A 
suitable perturbation to  the equilibrium was made by rounding off the equilibrium 
values of the R, and 7, usually to two significant figures. The drop was found to 
oscillate in time about the equilibrium, the oscillation decaying for G < 0.054 and 
increasing for G > 0.054. While the oscillation remained small compared with the 
equilibrium but large compared with numerical noise, the oscillation settled down in 
one cycle to a single exponentially decaying or growing sinusoidal oscillation. The 

TI P L M  98 
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FIGURE 4. The reciprocal of the height of the end of the equilibrium drop as a function of the 
shear rate. The solid curve is the numerical result of § 3 and the dashed curves the predictions 
of the polynomial representations. 

frequency of the oscillation w, and the exponential decay rate wi were extracted from 
the minima and maxima of the oscillations in the length and height of the end, ~ ( 2 ) .  
This method of analysing the data seemed to have an inherent inaccuracy of 2%, 
and failed to  give sensible results when G < 0.02 because the oscillation decayed too 
rapidly, and failed when G > 0.055 because the oscillation grew too fast. 

Figure 6 gives the results for the frequency and decay rate for this lowest mode of 
small amplitude disturbances. The solid curve was obtained with a 10-term representa- 
tion, a 7-term representation producing results which differed by 2 yo, the inherent 
error of the data analysis. A quadratic interpolation through the results for G = 0.05, 
0.0525 and 0-055 finds that the decay rate becomes negative at G = 0.0541. Thus the 
equilibrium shape is unstable to small disturbances for G > 0.0541. 

The dashed curve in figure 6 gives the results from our simple model, the 1-term 
representation, for the frequency wr and the decay rate wit 
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FIGURE 5. The shape of the equilibrium drop at G = 0.055. The solid curve is the numerical 
result of 3 3 and the dashed curves the predictions of the polynomial representations. 

in which = (1 - 413)/( 1 + 0.813), with 1 the dimensionless half-length of the equili- 
brium drop. These predictions are within 23% of the results with the 10-term rep- 
resentation for G < 0.035. The model further suggests that as G + 0 the frequency 
and the decay rate should scale with G-2 with a correction term O(G2). An analysis 
of the results for the 10-term representation does yield w, N 0.619G-% - 35.2G4 and 
w i  N 0.577G:-2-47-4G% as G+O.  The leading order terms are 30% off by G = 0.02, 
but with the correction terms the asymptotic forms stay within 10 yo until C: = 0.045. 
The G2 time scale for G -+ 0 is the time in which the surface tension G-l changes the 
radius G-4 significantly, the radius G-4 corresponding to the length GJ from $ 3.2 and 
the volume constraint. 

The origin of the oscillation about the equilibrium can be found in the combination 
of a rotation of the drop which depends on its length and a stretching of the drop 
which depends on its orientation. I n  the discussion of the ? equation at the end of 
$ 2 . 4 ,  we noted that the drop tends to sink, ? < 0, due to advection (if r,y’ > 0) and 
rise, > 0, due to the tapering of the droplet (if RR’ < 0). Thus, relative to the 
equilibrium, we would expect a shorter drop with a larger radius and tapering to rise, 
while a longer one would correspondingly sink. On the other hand the length of the 
drop is determined by the balance of stretching by the flow with shrinking by surface 
tension. Thus when a drop is higher in the flow than the equilibrium it  feels larger 
velocities and so is stretched, while a drop lower than when in equilibrium would 
correspondingly shrink. Combining the effects of the rotation and stretching we 
produce an osciliation: relative to the equilibrium a longer drop sinks, a lower drop 
contracts, a shorter drop rises, and a higher drop extends. A similar oscillation about 
the equilibrium is found in nearly spherical drops in a weak shear flow, Cox ( 1  969). 

The above description of the oscillation says nothing about the stability of the 
11-2 



324 E.  J .  Hinch and A .  Acrivos 

' \  
\ 
\ 

0.025 0'030 0.035 0.040 0.045 0.050 0.055 

G 

FIGURE 6. The frequency w, and the exponential decay rate wi of the lowest mode of small 
disturbances as a function of the shear rate. The dashed curves are for the N = 1 model. 

equilibrium. The decay of the oscillation comes from another effect: the tendency of 
the drop to return to its equilibrium length when the drop is in the equilibrium 
orientation. It appears that the internal pressure differences, which increase rapidly 
with the length of the drop for a given orientation, destroy the stability of an equili- 
brium if the dimensionless half-length exceeds 1.13 by the same mechanism that 
operates in pure straining flows on drops exceeding a non-dimensional half-length 
0.63. The principal difference between the behaviour of drops in simple shearing and 
in pure straining flows is that the internal pressure differences do not preclude the 
existence of equilibria above a critical shear rate because the drop can assume an 
orientation in which it feels very little straining. 

We note that the least stable mode of disturbance of the drop is found to have a 
length scale of the length of the drop, i.e. the maximum permitted wavelength. This 
result for the linear stability of a finite length drop is different from that for an infinitely 
long cylindrical drop, which has a least stable mode with a wavelength comparable 
to the thickness. The difference is due to the finite length drop having an equilibrium 
with a stabilizing curvature which must be overcome'by a disturbance of finite 
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FIGURE 7. Comparison between the theoretical prediction and Grace's (1971) observation of the 
critical shear rate for break up as a function of the viscosity ratio: 0, 4 5 6  P; A, 502 P ;  V , 
2815P. The solid curve gives the theoretical prediction Epaly  = 0.0541h-8, while the dashed 
curves are the best fits through the experimental observations of the break-up due to fracture 
EpaIy = 0.17h-o.55 and the break-up due to tip streaming Epaly  = 0.56 .  

ampIitude. The fact that  the wavelength of greatest interest is long is fortunate 
because we can only study long wavelength disturbances with our slender drop 
equations. Furthermore, cross-sectional shape disturbances, which of course we cannot 
study with our present analysis, should be similar to short wavelength disturbances 
and of little interest. 

We compare our prediction of the conditions a t  break-up, G = 0.0541, with Grace's 
(1971) experimental observations in figure 7 .  I n  shear flow Grace saw drops breaking 
sometimes by tip streaming and sometimes by fracture. Our prediction is in fair 
agreement with the observed break up by fracture, except a t  the less small values of 
A. At h = 0.1, however, we predict an aspect ratio a t  break up of 4, which is not very 
large as assumed in our slender body theory. The difference in the power law between 
the experiments and our theory does not result from our assumption that the cross- 
section is circular because a slender body theory which calculates the correct cross- 
sectional shape would also produce a A-8 prediction for break-up. 

4.5. A jump in shear rate 

A number of experimental studies have reported that the measured critical shear rate 
beyond which no equilibrium could be found depends on the way the shear rate is 
changed, and that higher shear rates could be reached by increasing the shear rate 
more slowly (Torza, Cox & Mason, 1972). To study this nonlinear aspect of the equilibria 
we have conducted a numerical experiment in which we start with an equilibrium 
drop shape corresponding t,o one shear rate Go and then suddenly change the shear 
rate to  a new value GI. 

In  all the cases in which the shear rate was decreased, G, < Go, the drop attained 
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FIGURE 8. The path of the tip of the drop after a sudden jump in the shear rate from Go = 0.01 
to GI = 0.039, 0.04 and 0.045. The blobs along the curves are at time intervals o f t  = 0.1. The 
predictions of the different polynomial representations diverge after t = 1 for G = 0.04 and after 
t = 0.9 for G = 0.045. 

the equilibrium shape corresponding to the new shear rate G,. When the shear rate 
was increased, the drop attained the equilibrium shape corresponding to the new shear 
rate so long as the jump was not too large. There was however, a critical value G,* 
such that the drop did not attain its equilibrium shape if the new shear rate exceeded 
this critical value, in spite of the existence of a stable (to small disturbances) equili- 
brium when the new shear rate lay in the range G,* < G,  < 0.0541. 

An example of the effect caused by a sudden increase in the shear rate is given 
by figure 8 which shows the path of the tip of the drop, the point x = 1 and y = q(Z), 
as a function of time after the shear rate has been increased from Go = 0.01 to 
G, = 0.039, 0.04 and 0.045, the value of G,* being 0.0396 0.0001 for this Go. In the 
case G, = 0.039 which is less than Gf, the end of the drop quickly rises, then the drop 
extends until (for this just subcritical case) the length is roughly equal to that of the 
longest stable equilibrium, and finally the drop contracts to the stable equilibrium 
in a decaying oscillation. In  the case G,  = 0.04 which is just above Gf, the drop 
roughly follows the G, = 0.039 curve, but at  time t = 1, just after the drop has started 
to contract to the stable equilibrium, the solution breaks down into a very rapid 
motion whose detailed form varies with the number of terms used in the polynomial 
representation. The case G, = 0.045 shows no sign of contraction before t = 0.9 when 
the solution breaks down. We do not understand this breakdown. It could be due to 
a spurious failure of the numerical representation, but this appears unlikely because 
all the representations agree well up to the breakdown, the nearby case G, = 0.039 
is represented with no difficulty, and also the polynomial representations easily 
reproduce the equilibria with 1 < 1.3. It is thus tempting to suggest that the break- 
down is physically significant and might even be related to the observed phenomenon 
of tip-streaming (Grace 1971), because the details depend on the numerical representa- 
tion of fine scales. The shape of the drop, however, shows no suggestive feature in the 
breakdown and certainly there is no hint of droplets streaming off the end. We regret 
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FIGURE 9. The marginal value of the new shear rate G: as a function of the old shear rate to ensure 
that the drop attains the new equilibrium shape. The dashed curve is for the N = 1 model. 

that we can offer no physical understanding of this breakdown which occurs in our 
numerical experiments. 

The dependence of the critical value of the new shear rate Gf on the starting shear 
rate Go is given in figure 9. The results were obtained with a 7-term representation, 
with spot checks with a 10-term representation. The dashed curve gives the results 
for our simple model, the 1-term representation, which differ from the exact results 
by about 10 yo. 

The asymptotic behaviour of Gf as Go+ 0 can be found in our simple N = 1 model. 
We start from the equilibrium I = 1, N 3.50G8, h = h, N 1*46Gr& as Go -+ 0. I n  a first 
phase of the unsteady process of duration G i  (the time scale found in 54.4 for the 
oscillations about the Go equilibrium), the surface tension restoring force is O(G,/G,) 
and therefore negligibly small, assuming that we find G: 9 Go as Go+O. Thus the 
governing equations in the first phase are 

i = h and h = 7-5k2, 

with solution h2 = 3 4 -  15Z-l, 

11 + (t  - $lo)4 
(12 - $tto)4 - 3 4 t 0  + $1, In = Sthot. 

li( 1 + 3-4) 

Thus we leave the first phase with the end of the drop being advected with the flow 
a t  a height 31 higher than a t  the start. As the drop lengthens the surface tension 
restoring term in the i equation grows to a maximum of 0.125Gc1 at 1 = 1.08, while the 
advection term is 2.54G;i until h decreases. As we are interested in the marginal 
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case GT where the surface tension restoring term and the advection term are com- 
parable, we are led to consider G, = O(G&). Thus the second phase has a duration 
G i  in which 1 = O(1) and h = O(G,)). If we set t = 4.472GlT and h = 2 * 5 3 6 G c f H ,  
the governing equations for the second phase are a t  lowest order 

1, = /3H - 1#/ (  1 + 0.813), 

HT = -Hit/( 1 + 0*8Z3), 
in which ,8 = 11.340G1/G&, These equations must be solved numerically with initial 
conditions from the first phase H = 1 and 1 = 0 a t  T = 0. The numerical solutions 
show that the drop extends indefinitely if /? > 2.073, while it contracts towards the 
equilibrium 1 = H = 0 in this scaling if/? < 2.073. Thus we predict from this matched 
asymptotic analysis that G, = 0.1828G&, which is within 10% of the exact 1-term 
results for G, < 0.03  and within 1 yo for G, < 0.015. 

The numerical results of the more accurate representations show the same structure 
as our simple model as Go --+ 0. As Go + 0, the initial equilibrium shape has 1 = O(Gi)  
as found in § 3 . 2  and, by the volume constraint, y and R are both O(G;b). When the 
shear rate is suddenly increased to G,, the end of the drop rises by a small numerical 
factor in a time O(Gt) ,  and the drop is then advected with the flow with 7 = O(G,$). 
The end rises because of the tapering which diminishes as the drop lengthens. As the 
drop extends, the advection term yR' in the equation drops like G;$Z-# from being 
initially O ( G t l )  to being O(G;a) a t  I = 1, while the internal pressure term grows like 
G;f 14, from being initially negligibly small to being O(G;*) a t  Z = 1. Thus the surface 
tension term 1/2G, must stop the extension when 1 = 0(1), or sooner, by having 
GI < O(Gt) if it is going to be effective. The numerical results do show that G: - 0.15Gt 
as Go+O and that just below the marginal case the drop is stretched to  roughly the 
length of the largest stable equilibrium 1 = 1.13 before contracting to the equilibrium 
with 1 = O(GZ). Just  above the marginal case however the more accurate representa- 
tions show that the drop does not extend indefinitely as in the 1-term representation 
but instead the drop begins to contract before the solution breaks down a t  a well 
determined time. 
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